Impact of perturbations to nitrogen oxide emissions from global aviation

نویسندگان

  • Marcus O. Köhler
  • Gaby Rädel
  • Olivier Dessens
  • Keith P. Shine
  • Helen L. Rogers
  • Oliver Wild
  • John A. Pyle
چکیده

[1] The atmospheric response to perturbations in NOx emissions from global air traffic is investigated by performing a coherent set of sensitivity experiments. The importance of cruise altitude, size of the emission perturbation and geographical distribution of emissions is systematically analyzed using two global chemistry transport models and an off-line radiative transfer model. NOx emissions from a contemporary aircraft inventory have been used to assess the impact of global air traffic on ozone and methane. In further experiments the NOx emissions are perturbed, in turn, in 16 cruise altitude bands between 5 and 15 km altitude. In the p-TOMCATmodel we diagnose an annual mean ozone increase of up to 6 ppbv and a decrease in the methane lifetime of 3% due to global air traffic in 2002. Associated radiative forcings of 30 mWm 2 for ozone and 19 mWm 2 for methane are diagnosed; a simple method is used to estimate the forcing due to the methane-induced ozone change and this yields an additional 11 mWm . Results show that up to the tropopause, ozone production efficiency and resulting impacts increase per emitted mass of NOx with the altitude of the perturbation. Between 11 and 15 km we find that the geographical location of the NOx emissions plays a crucial role in the potential O3 impact and lifetime change of CH4. We show that changes in flight routing in this altitude range can have significant consequences for O3 and CH4 concentrations. Overall, we demonstrate a linear relationship in the atmospheric response to small emission changes which can be used to predict the importance of perturbations about the reference aircraft emissions profile, provided the geographical distribution of the emissions is not altered significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions

The black carbon (BC) burden of the upper troposphere and lowermost stratosphere (UTLS) is investigated with the general circulation model (GCM) ECHAM4. The special focus is the contribution of aircraft emissions to the UTLS BC loading. Previous studies on the role of aircraft emissions in the global BC cycle either neglect BC sources located at the Earth’s surface or simplify the BC cycle by a...

متن کامل

Investigation on life cycle assessment of lead and zinc production

Lead and zinc production is one of the main predisposing factors of excessive greenhouse gases emissions, air pollution and water consumption. In this paper, the environmental problems of lead and zinc production in Calcimin plant are expressed and life cycle assessment of this plant is assessed. The data regarding the amount of induced global warming and pollution, acidification, and depletion...

متن کامل

Flying into the future: aviation emissions scenarios to 2050.

This study describes the methodology and results for calculating future global aviation emissions of carbon dioxide and oxides of nitrogen from air traffic under four of the IPCC/SRES (Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker scenarios: A1B, A2, B1, and B2. In addition, a mitigation scenario has been calculated for the B1 scenario, requiring rapid ...

متن کامل

Human nitrogen fixation and greenhouse gas emissions: a global assessment

The net impact of human nitrogen (N) fixation on climate (ignoring short-lived components) mainly depends on the magnitude of the warming effect of (direct and indirect) nitrous oxide (N2O) emissions and the cooling effect of N-induced carbon dioxide (CO2) uptake. N-induced CO2 uptake is caused by anthropogenic N deposition which increases net primary production (NPP) in N-limited ecosystems an...

متن کامل

Long-term scenarios for aviation: Demand and emissions of CO2 and NOx

This study presents a dynamical systems model for long-term scenarios of demand in the aviation sector and resultant emissions of CO2 and NOx. We analyze the dynamics of demand growth for aviation, particularly in the emerging markets of developing nations. A model for subsonic aviation emissions is presented that reflects the consequences of industry forecasts for improvement in aviation fuel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008